
 Ada has always been an attractive choice in
application domains where reliability is para-
mount, and the new Ada 2012 version repre-
sents another major advance in the evolution
of the language towards safety, namely with
the addition of contract-based programming.
Another aspect that became critical with the
widespread of parallel hardware architectures
was the control of task affinities to improve ef-
ficiency and analyzability.

Before explaining the advantages of contracts,
let us move to a higher level of abstraction and
talk about what they represent: requirements.
Software requirements define what needs to be
implemented and how. This is usually achieved
using natural (informal) language, but with
contracts the idea is to define the requirements
by formally specifying the exact functionality
to implement. This is the cornerstone of De-
sign-by-Contract, which gives precise and veri-
fiable semantics to specifications.

A contract is given by a precondition, which
the caller must pay to be entitled to the service
provided by the callee, and a postcondition,
which is the service the callee must provide to
the caller. Ada 2012 includes specific features
for contract-based programming: preconditions,
postconditions, type invariants, and subtype
predicates. A precondition is a logical expression
that must be true when a subprogram is called,
and analogously a postcondition must be true
when the subprogram returns. A type invariant
is a postcondition that applies to every public
subprogram for a type, and a subtype invariant
is a logical expression that characterizes a subset
of values for a type. Contracts, which are in ef-

fect low-level requirements, may be verified
dynamically, and they may also be verified stat-
ically using appropriate tools.

Expressing properties in contracts is greatly
facilitated by the use of several new Ada 2012
features: conditional expressions, case expres-
sions, universal and existential quantified ex-
pressions, and expression functions (an ex-
pression function is a simple function whose
body is defined by a single expression). Addi-
tionally, the expression in a postcondition can
refer to the value returned by a function F as
F’Result, and to the value in the pre-state (at
the beginning of the call) of any variable or
parameter V as V’Old. For example, we may
want to define the specification (requirements)
for an unbounded array whose elements are
always ordered in increasing order, which can
be modified by a function called Add that in-
serts an element in the corresponding location
of the ordered array. The requirements can be
specified using natural language, or better
using formal logic formulas relating the input
to the output state defining accurately and un-
ambiguously the expected behavior (figure 1).

The Boolean expression representing the post-
condition for the subprogram defines the ex-
pected effect of the function: we expect a list
which has one more element than the one
passed as parameter (the one we are inserting
as parameter), and with items in the list moved
one position to the end if they are greater or
equal than the inserted value. Note that in this
case, we have defined the properties of the type
to ensure it is always ordered, so we do not
need to ensure the ordering again in the post-

condition. These Ada 2012 capabilities can be
exploited by new static analysis and proof tools,
which can significantly reduce the time and
cost associated with traditional testing approach-
es, increasing at the same time the level of con-
fidence, and helping detect problems early.

The complexity of both hardware and software
quickly increases to cope with ever demanding
applications, bringing increasing attention to
high-level, abstract development methods. We
have just discussed the interest of formal spec-
ification as a means to help requirements-
based software development. There is another
field requiring attention for engineering com-
plex systems, which is software architecture.
Writing correct programs efficiently exploiting
parallel hardware is not trivial, and by providing
the right level of abstraction, programmers
are isolated from the need to understand low-
level details. The Ada tasking model provides
concurrency as a means of decoupling appli-
cation activities, hence making software easier
to design and test. At the same time, it gives
different levels of control over the hardware
where the application executes. Concurrency
has been a first-class citizen in Ada since the
beginning, and it has kept improving over
time. Already in Ada 83 there were tasks as
units of concurrent/parallel execution (same
abstraction level as threads), and high-level
constructions for message-based synchronizing
and communicating them. Then, Ada 95 in-
troduced the notion of synchronization and
communication using data-oriented commu-
nication. The Ada 2005 standard added support
for run-time profiles (for efficiency and sim-
plicity), flexible task-dispatching policies, the

Embedded safety: multicore
programming with Ada 2012

EMBEDDED SAFETY

By Dr. José F. Ruiz, Adacore

A new version of the Ada language,
with nice additions in safety,

flexibility, and efficiency has reached
the software developers community.

Many areas have been improved,
but if I have to choose those I like
the most, I would mention those

directly related to program correctness
and the better handling of Ada

programs on multicore architectures. Figure 1: Subprogram contract

December 2012 10

capability of monitoring and controlling execution time, and a unification
of concurrency and object-oriented features. Finally, Ada 2012 improved
largely the support for multiprocessor architectures. Ada has always
taken into account parallel hardware architectures, supporting concurrent,
parallel and interleaved execution, allowing for different partitioning
schemes. However, until Ada 2012, there was not a standardized mecha-
nism to control task allocation on processors.

In terms of relationship between tasks and processors, the spectrum
goes from global scheduling, where any task can be executed on any
processor at any time, to partitioned scheduling, where each task is allo-
cated for its whole lifetime to concrete processors. The schedulability
of neither approach is strictly better than the other (there are task
systems that are feasible using a global partitioning that cannot be
scheduled in a partitioned system and vice versa). Ada 2012 includes a
flexible and general-purpose mechanism to handle task affinities in the
form of dispatching domains, the abstraction representing groups of
processors on which we allocate tasks.

Processors are grouped together into dispatching domains, and tasks
may then be allocated to domains. Tasks allocated to a given dispatching
domain will be executed on any of the processors of that domain. It is
also possible to allocate a task to a concrete processor (either statically
or dynamically) for any amount of time. Figure 2 depicts a couple of
possible allocation strategies and how to exploit them. The notion of
task affinity is supported by mainstream operating systems (such as
Linux, Windows, Solaris, VxWorks, …). The Ada model is slightly
more restricted than the generic mechanism provided by these operating
systems: dispatching domains are non-overlapping, and they can only
be created before calling the main subprogram. However, this more
static model is flexible enough to support many different partitioning
schemes, while at the same time providing for the definition of
analyzable software architectures.

Reliable and very efficient execution on multiprocessors can be achieved
using the Ravenscar tasking profile. This subset of Ada tasking features
embodies a deterministic concurrency model inherently amenable to
static analysis and implementable by a small, reliable, and extremely ef-
ficient run-time library. The profile has been defined to improve
memory and execution time efficiency (removing high overhead or
complex features), and to increase reliability and predictability (removing
non-deterministic and non-analyzable features).When reliability, pre-
dictability, and analyzability are critical, Ada 2012 proposes a simple ex-
tension to the Ravenscar profile to support multiprocessor systems
using a fully partitioned approach. The implementation of this scheme

is simple, and it can be used to develop applications amenable to
schedulability analysis. TheRavenscar profile implements fixed-priority
pre-emptive scheduling, with tasks statically allocated to processors
and no task migration among processors. Apart from the support for
task affinities, there are other interesting capabilities allowing for pre-
dictability and efficiency on parallel architectures. Ada 2012 added a
new effective parallel task synchronization mechanism with which a
group of tasks can block and be released at once to work in parallel
(mimicking the POSIX barrier mechanism). There is also the possibility
to control the behavior of selected objects with respect to their order of
loads and stores with multi-level caches. A typical problem when imple-
menting synchronization on multiprocessors (such as wait-free and
lock-free) is that of memory consistency, to ensure that the execution
does not result in an unexpected order of execution. Ada 2012 allows
you to mark variables as volatile so that all tasks of the program (on all
processors) that read or update volatile variables see the same order of
updates to the variables; it is the responsibility of the compiler to use
memory barriers to flush the cache if needed. Ada 2012 takes advantage
of decades of experience in using Ada on multiprocessors, and it has be-
come a great language helping to exploit parallelism in an efficient and
predictable manner. One of the challenges in software engineering is
how to go from high-level specification and design to their actual imple-
mentation. Ada 2012 addresses this issue by providing a high level of ab-
straction exposing concepts that are relevant for the design. It addresses
the specification with contracts, that define accurately the required
functionality, and that are naturally verifiable by either formal proofs or
testing. It targets the design with the Ada tasking model that permits
control over aspects such as processor affinity, dispatching mechanism,
and memory consistency.

11 December 2012

EMBEDDED SAFETY

Figure 2: Some partitioning schemes

http://www.elma.com

