Fast switching and its challenges on Power Module Packaging and System Design

Power Electronic Conference

Munich

05/12/2017

Stefan Häuser
Product Marketing International
stefan.haeuser@semikron.com

Johannes Krapp
Product Management Electronics
Johannes.krapp@semikron.com
Agenda

1. Introduction fast switching
 1.1 Introduction

2. Challenges module
 2.1 Stray inductance
 2.2 Thermal performance
 2.3 Reliability

3. Challenges system
 3.1 DC link
 3.1 Electronics

4. Best practice
Agenda

1. **Introduction fast switching**

2. **Challenges module**
 - 2.1 Stray inductance
 - 2.2 Thermal performance
 - 2.3 Reliability

3. **Challenges system**
 - 3.1 DC link
 - 3.1 Electronics

4. **Best practice**
Fast switching

What is fast switching

10-40 kHz
- 650V/1200V
- New Si chips, new topologies, hybrid SiC
- No significant impact on module/system

>40 kHz
- 1200V/1700V
- SiC
- New challenges on module/system

Why
- Increase efficiency
- Improve modulation accuracy
- Reduction of costs
- Reduction of size

Switching with 30kV/µs and 2nH stray inductance
Challenges Power Module

Commutation Inductance:
Faster switching means higher di/dt resulting in higher overvoltage compared to Silicon

Thermal performance:
Silicon Carbide chips are smaller, give worse thermal performance compared to Silicon

Power Cycling Capability and Reliability:
Mechanical stress on the module interconnections is higher with SiC compared to Silicon due to its mechanical properties
Stray inductance

- Over voltage during switch-off over IGBTs/ MOSFETs
- Oscillations with chip capacitance -> EMI
- Overvoltage limits switching loss reduction by using bigger R_G
- Maximum usable DC link and output current is limited

Target

Reduction of stray inductance
Parasitic elements in the module

- Bond wires, DBC traces: 1...6 nH
- DC power terminals: 12...18 nH
 (busbars, DC-link: 10...30 nH)
- Module gate connectors: 20...160 nH
 (gate driver wiring: 5...20 nH)
- \(C_{\text{oss}} \): 0.2...1.5 nF/100 A
Ways for optimization for fast switching on module level

Optimize DC+ / - terminals regarding minimum stray inductance

Use **gate inductance** as **current booster** during Miller plateau – **smaller is not necessarily better**

Optimize power hybrid design regarding chips positioning, wire bonds, DBC layout...

![Diagram showing inductance comparison](image_url)
Power Module Commutation Inductance: Fixed

MiniSKiiP spring contacts:
- $L_{stray} = 20\sim$ to 30 nH
- depending on housing size, but fixed due to housing design
- 1200V/20A to 90A

SEMITRANS screw terminals:
- $L_{stray} = 15$ nH
- fixed due to package construction
- 1200V/350A to 500A
Power Module Commutation Inductance: Flexible

SEMITOP E2
Industry standard package
Pin Grid structure allows flexible placing of the Press-Fit pins

Optimized chip layout:
Lowest commutation inductance
$L_{stray} = 6\text{nH}$

Super low inductive system design
$L_{\text{stray, compl.}} = 10\text{nH}$
Vs. 45nH in std. module
Perfect layout for paralleling
Silicon Carbide is expensive:

SiC current density is higher than Silicon, i.e. chips are generally smaller:

- 1200V Silicon IGBT: 1A/mm²
- 1200V SiC MOSFET: 2A/mm²

Silicon Carbide cost is and will stay higher than Silicon

Maximum chip performance has to be maintained by **minimising the thermal resistance.**

<table>
<thead>
<tr>
<th>Ceramic substrate material</th>
<th>Al_2O_3</th>
<th>Si_3N_4</th>
<th>AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Conductivity (W/mK)</td>
<td>~25</td>
<td>~90</td>
<td>~180</td>
</tr>
<tr>
<td>Standard Thickness (mm)</td>
<td>0.38</td>
<td>0.32</td>
<td>0.63</td>
</tr>
<tr>
<td>Resulting Thermal Performance</td>
<td>100%</td>
<td>~400%</td>
<td>~400%</td>
</tr>
</tbody>
</table>
SEMITRANS 3 Full SiC Platform

Available in two versions, with standard Aluminium Oxide (Al$_2$O$_3$) and Aluminium Nitride (AlN).

With AlN less chips but same current at lower cost.

<table>
<thead>
<tr>
<th></th>
<th>SEMITRANS 3 Al$_2$O$_3$</th>
<th>SEMITRANS 3 AlN</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of chips per switch</td>
<td>12</td>
<td>8</td>
</tr>
<tr>
<td>Used Chip area</td>
<td>100%</td>
<td>66%</td>
</tr>
<tr>
<td>$R_{th(j-c)}$ per chip</td>
<td>0.84K/W</td>
<td>0.54K/W</td>
</tr>
<tr>
<td>Cont. drain current I_D</td>
<td>431A</td>
<td>416A</td>
</tr>
<tr>
<td>($T_j=175^\circ C/T_c=80^\circ C$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Module Cost</td>
<td>100%</td>
<td>75%</td>
</tr>
</tbody>
</table>
Reliability

The publication of Technical University Chemnitz* presents the technological status as of today:

- Young modulus of SiC is bigger by a factor of 4
- SiC dies are thicker than standard Si dies
 (1200V SiC: 230µm to 330µm; 1200V IGBT4: 115µm)
- Both leads to high mechanical stress on interconnections

Expectable SiC power cycling capability is only around 33% of Silicon results in standard packages.

* Power cycling capability of Modules with SiC-Diodes, Christian Herold et.al., CIPS 2014

600V SiC-Schottky diode, compared to 1200V
IGBT, ΔTj = 81K +/- 3K and Tjmax = 145 °C +/- 5K. *
CTE mismatch to standard DBC substrates is bigger

Solution:

Use optimized DBC substrate, such as AlN for baseplate modules or Si₃N₄ for baseplate-less power modules

Better adjusted CTE and higher thermal performance.

<table>
<thead>
<tr>
<th>Material Substrate/Chip</th>
<th>Al₂O₃</th>
<th>Si</th>
<th>AlN</th>
<th>SiC</th>
<th>Si₃N₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coefficient of Thermal Expansion (ppm/K)</td>
<td>8.3</td>
<td>4.1</td>
<td>5.7</td>
<td>3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

SEMITRANS 3 Full SiC has full power cycling performance with AlN substrate.

SEMITOP E2 SiC under testing
Reliability

Young modulus of SiC is bigger by up to a factor of 4 / Most SiC chips are thicker than standard Silicon chips

Solution: Sintered Die Attach

- Fine silver paste is sintered under **40MPa pressure at ~250°C**
- **Low homologous temperature:** ratio of operation temperature to melting temperature in K
- Excellent long term reliability, *eliminating the solder layer as the weakest link.*
Agenda

1. Introduction fast switching
2. Challenges module
 2.1 Stray inductance
 2.2 Thermal performance
 2.3 Reliability
3. Challenges system
 3.1 DC link
 3.1 Electronics
4. Best practice
Inductance – to be considered in system context

Evaluation Factor:
\[L_{\text{STRAY}} \times I_N \]

SKM400GB12T4
400A \times 15 \text{nH} = 6

SKiiP38GB07E3V1
300A \times 15 \text{nH} = 4

SKiiP25ACM12V17
90A \times 20\text{nH} = 1.8

SKAI LV
350A \times 3\text{nH} = 1
Low inductive DC link

How to

- Integrate snubber capacitors -> DC Link-snubber oscillations
- Short distance between DC +/-
- Maximum overlap of DC+/-
- Paralleling of pins (power pins/bars of module and capacitors)

\[L_{DCBusbar} \approx \mu \times a \times \frac{d}{b} \]
\[L_{cap} \approx L_{single}/\text{capacitors} \]
Challenges

- \(\frac{dv}{dt} > 100 \text{kV}/\mu\text{s} \) with \(f_{SW} > 300 \) kHz
- \(Q_G \sim \text{Si} \), \(f_{SW} \) much higher
 - \(\rightarrow I_{\text{out ave}} \) up to 1A
- Lower \(t_{\text{dead}} \) required due to higher \(f_{SW} \)
- Fast \(V_{ce} \) detection required due to lower short-circuit withstand times
- Lower gate threshold voltage requires safe off-hold
- \(f_{SW} \) higher \(\rightarrow \) More impact of gate path inductance on oscillations
SiC MOSFETs **body diode** has a **pn-junction** and therefore **reverse recovery losses**.

SiC Schottky free-wheeling diode has **no reverse recovery** and reduces the overall switching losses by 30 to 40% compared to MOSFET-only topologies.

Optimising the interlock time to 120 to 300ns achieves similar results.
SKYPER used for driving SiC

<100kHz: SKYPER 42LJ
- \(\frac{dv}{dt} \) up to 100kv/\(\mu \)s
- Stabilized gate voltages
- Configurable input filter concept
- Configurable interlock
- Fast error detection <1\(\mu \)s
- Direct \(\mu \)C connection with differential 5V interface
- Over temperature, under voltage, short circuit

>100kHz dedicated research driver with 20ns input filter and special fast output stage will be used; proved at 300kHz
Best practice examples

MiniSKiiP SiC stack – 25kW
 – SKiiP 26ACM12V17
 – 600V/40A total losses 0.9mJ

SEMIKUBE SL Hybrid SiC – 100kW
 – SKM200GB12F4SiC
 – Twice the switching frequency @ same output current

19“ DC fast charger rack – 50kW
 – Low inductive SEMITOP E2
 – AFE and DC/DC converter
 – Efficiency >97%
Thank you for your attention!