Rdyn in hard and soft-switching applications

P. Gassot, P. Moens, M. Tack,
Corporate R&D
Bodo Power Conference
Munich, Dec. 2017
The authors wish to acknowledge and thank the University of Padova (Italy) and the University of Bristol (UK) for their significant contribution to this reliability investigation as well as our colleagues from ON Semiconductor who have effectively collaborated to this work.

References:

GaN High Electron Mobility Transistor

GaN Material
Binary Crystal

Spontaneous Polarization due to electro-negativity difference between N-atoms and Ga-atoms

N=3.4, Ga=1.8

AlGaN layer

Higher Spontaneous Polarization

N=3.4, Ga=1.8, Al=1.6

Piezoelectric polarization due to strained layer

2DEG: Ns HEMT ns~ 10^{13} cm$^{-2}$

(Typical MOSFET ns~ 10^{12} cm$^{-2}$)

Low Ron

high 2DEG n_s ~ 1×10^{13} cm$^{-2}$

high 2DEG mobility ~ 2000 cm2/Vs

High Breakdown

wide bandgap (3.4 eV)

Low Capacitance

no junctions (undoped)

No Qrr
JEDEC Standard for Power Discrete Qualification:

- Semiconductor Power discretes are currently qualified based on the JEDEC Standard (JESD47/JEP122) developed for Silicon (Different activation energies for GaN so different testing conditions/models needed)
- The Statistical methods used to calculate failure rates are based on field returns and well identified failure modes (Limited knowledge built on GaN)
- The JEDEC standard does NOT provide any dynamic testing conditions, (The stability of dynamic electrical performance are crucial for GaN)

How to release GaN Power Devices to the market

<table>
<thead>
<tr>
<th>Type</th>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Device</td>
</tr>
<tr>
<td></td>
<td>HTRB*</td>
<td>High Temperature Reverse Bias</td>
</tr>
<tr>
<td></td>
<td>HTGB*</td>
<td>High Temperature Gate Bias</td>
</tr>
<tr>
<td></td>
<td>HTOL</td>
<td>High Temperature Operating Life</td>
</tr>
<tr>
<td></td>
<td>LU</td>
<td>Latch-up</td>
</tr>
<tr>
<td></td>
<td>ED</td>
<td>Electrical Characterization.</td>
</tr>
<tr>
<td></td>
<td>IOL*</td>
<td>Intermittent operating life</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td>Unbiased autoclave 121C/100%RH</td>
</tr>
<tr>
<td></td>
<td>HAST</td>
<td>Biased HAST, 130C/85%RH</td>
</tr>
<tr>
<td></td>
<td>HTS</td>
<td>High Temperature Storage</td>
</tr>
<tr>
<td></td>
<td>TC</td>
<td>Temperature Cycle, -65/150C</td>
</tr>
<tr>
<td></td>
<td>ESD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HBM</td>
<td>ESD - Human Body Model</td>
</tr>
<tr>
<td></td>
<td>CDM</td>
<td>ESD - Charged Device Model</td>
</tr>
</tbody>
</table>

Graphs showing lifetime vs. temperature with Ea=2.1 eV [Whitman 2014]
New JEDEC Standard required for GaN

JC-70.1: GaN Power Electronic Conversion Semiconductor Standards:

- **Accelerate the Maturity of the Industry by Creating Credible Standards for GaN learning from the Past, Ramp Faster and Lower Risk to Customer**

- **Focus on Application & Usage in End Equipment and NOT on Harmonizing Devices, Process Equipment**

(Source: S.W. Butler, ‘Standardization for Wide Band Gap Devices: GaNSpec DWG’, APEC 2017)
GaN Quality Assurance vision

Structured Progressive Quality Assurance

QUALITY ASSURANCE

QUALIFICATION

INTRINSIC

GaN specific

Si (JESD47/AEC-Q101)

EXTRINSIC

GaN specific

Si (JESD47/AEC-Q101)

Design SOA

Screening

Failure Modes
- Field Returns (FIT)
- Test-to-Failure (FIT)

Application Mission Profile
- Electrical
- Temperature
- Ruggedness

Reliability Physics Characterization & Modeling
- Traps
- Acceleration
- Failure Modes
GaN HEMT Safe Operating Area

- Limitations of the Time Dependent Safe Operating Area:

 - Electromigration (Jmax) at Tambient/Tjunction
 - Gate Reliability
 - Vgs max.
 - Vgs min.
 - Impact of the switching modes
 - Hard Switching
 - Soft Switching
 - Dynamic Ron
 - Max. Pulsed Drain Current
 - Hot Carrier Injection
 - Max. Allowed Voltage
 - Load Profile
 - Cumulated time
 - Short-circuit capability
 - HT Reverse Bias
 - UIS Capability
 - Reliability of the GaN Epi
1 Reliability of the GaN Epi

Corporate R&D
Bodo Power Conference
Munich, Dec. 2017
Reliability of the GaN Epi Buffer

- GaN Buffer behaves as a leaky dielectric
 - One V_{TLF}: one dominant trap [Lampert, PhysRev1956]. In our case C_N
 - Above V_{TLF}: steep voltage acceleration (V^n) due to Poole Frenkel

- Stressed at $T=200^\circ\text{C}$
- Acceleration Model built & verified
Impact of the Switching Modes

Corporate R&D
Bodo Power Conference
Munich, Dec. 2017
What are typical Applications for GaN?

- Qualifying a product requires understanding its applications.
- Typical application of GaN includes the following:
 - Boost/Buck converter
 - Inverter
 - Bridgeless PFC
 - etc
- Most of the time GaN is hard-switched → Standard test vehicle requiring hard-switching testing is required.
DGD/Drain-Gate-Delay is referred to the overlap of the drain and gate voltage during OFF to ON switching cycle.

- Positive DGD → Towards Soft switching condition
- Negative DGD → Towards Hard switching condition
 - Higher the absolute magnitude, harsher is the condition.

Hard-Switching Test Vehicle

- $V_{DSQ} = 600V$
- $t_{off} \approx 2ms$
- $V_D = V_{DSQ}/2$
- $V_G = V_{th}$
- $t_{on _DRAIN}$
- $V_{GSQ} = -20V$
- $t_{off} \approx 2ms$
- $V_G = 0V$
- $t_{on _GATE}$
- $t_{on} = 20\mu s$
- $V_D = V_{DSQ}/2$
- $VG = V_{th}$
- $t_{on _GATE}$
- $V_{GSQ} = (0V, 1V)$
- $V_{GSQ} = (-20V, 600V)$

Example

<table>
<thead>
<tr>
<th>DGD</th>
<th>Soft</th>
<th>Hard</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4 μs</td>
<td>7.4 μs</td>
<td>7.4 μs</td>
</tr>
<tr>
<td>3.3 μs</td>
<td>3.3 μs</td>
<td>3.3 μs</td>
</tr>
<tr>
<td>2.4 μs</td>
<td>2.4 μs</td>
<td>2.4 μs</td>
</tr>
<tr>
<td>1.4 μs</td>
<td>1.4 μs</td>
<td>1.4 μs</td>
</tr>
<tr>
<td>0.4 μs</td>
<td>0.4 μs</td>
<td>0.4 μs</td>
</tr>
<tr>
<td>-0.05 μs</td>
<td>-0.05 μs</td>
<td>-0.05 μs</td>
</tr>
<tr>
<td>-0.35 μs</td>
<td>-0.35 μs</td>
<td>-0.35 μs</td>
</tr>
<tr>
<td>-0.65 μs</td>
<td>-0.65 μs</td>
<td>-0.65 μs</td>
</tr>
<tr>
<td>-0.75 μs</td>
<td>-0.75 μs</td>
<td>-0.75 μs</td>
</tr>
</tbody>
</table>
Measurement Conditions

R_{LOAD} = 1kΩ

Pulsed IV (Double pulse setup):
\(V_G = -20V \)
\(V_{DD/DS} = \) from 0V to 600V, 100V/step
\(V_S = V_{chuck} = 0V \)

Hard Switching stress:
\(V_G = 0V; \)
\(V_{DD} = \) As per the stress condition
\(V_{DS} \) measured by the custom probe
\(I_{DS} = I_{RLOAD} = V_{RLOAD}/R_{LOAD} \)
\(V_S = V_{chuck} = 0V \)

Temperature: Room and High temperature

Pulsed \(I_DV_D \) → Hard Switching Stress (DGD ≈ varying) → Pulsed \(I_DV_D \)
Study of Possible Degradation

- Hard switching condition leads to a dynamic variation of the on-resistance.
- The analysis of the on-resistance variation demonstrates that:
 - Increase of the on-resistance is directly linked to decrease of DGD.
 - No degradation observed for Soft switching condition (comparable to fresh device).
 - Is the degradation off-state voltage accelerated?

\[R_{\text{on_variation}} = \frac{R_{\text{on\(-20,VDSQ)}}}{R_{\text{on\(0,0\)}}} \]
Is the Degradation Voltage Accelerated?

- The degradation is Voltage accelerated.
- Off-state voltage \(\geq 300V \) + decreased DGD \(\rightarrow \) significant increase of the on-resistance.

\[
R_{\text{on variation}} = \frac{R_{\text{on (-20,VDSQ)}}}{R_{\text{on (0,0)}}}
\]
Is the Degradation Temperature Accelerated?

- The dynamic variation of the on resistance changes with the ambient temperature.
 - The change of the dynamic RON for VDSQ = 200V increases with temperature, with the «Bump: shifting towards lower VDSQ.
 - At VDSQ = 600V the variation of the on-resistance slightly decreases with temperature, presumably influenced by:
 - Increase of the detrapping process with temperature, detectable at both DGD = 3.3 µs and DGD = -0.65 µs.
 - Decrease of the influence of the hot electrons, detectable mainly at DGD = -0.65 µs.
Understanding of the Degradation Mechanism?

- Device degradation under hard switching condition is caused by Hot Electrons in the channel.
 - Higher the power dissipation \rightarrow Higher is the degradation.
- Recent TCAD[1] studies reported in literature points to similar facts.
 - Gate/Field plate edges (edge effect) suffer from high E-field in off-state, leading to higher degradation in those localized areas.

\begin{tabular}{|c|c|c|}
 \hline
 & $I_{DS} \sim 0 \text{ A}, \ V_{DS} = 480 \text{ V}$ & $I_{DS} \sim 5 \text{ A}, \ V_{DS} = 480 \text{ V}$ \\
 \hline
 \textbf{E-field} & \includegraphics[width=0.4\textwidth]{E-field_0A.png} & \includegraphics[width=0.4\textwidth]{E-field_5A.png} \\
 \textbf{Electron density} & \includegraphics[width=0.4\textwidth]{Electron_density_0A.png} & \includegraphics[width=0.4\textwidth]{Electron_density_5A.png} \\
 \textbf{Hot-carrier Generation} & \includegraphics[width=0.4\textwidth]{Hot-carrier_0A.png} & \includegraphics[width=0.4\textwidth]{Hot-carrier_5A.png} \\
 \hline
\end{tabular}

Emission Microscopy Results [1]

- Spatially resolved EL spectra confirms the hot electron related degradation during hard switching.
 - Decreasing DGD \rightarrow Higher EL signal \rightarrow Higher degradation.
 - No emission observed for soft switching condition.

- EL/Degradation signal is observed at the gate edge of the drain side.
 - Results in line with TCAD understanding.

<table>
<thead>
<tr>
<th>DGD</th>
<th>Drain Gate DGD</th>
<th>Drain Gate DGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 µs</td>
<td>-0.4 µs</td>
<td>-0.75 µs</td>
</tr>
<tr>
<td>-0.4 µs</td>
<td>-0.85 µs</td>
<td>-0.9 µs</td>
</tr>
<tr>
<td>-0.75 µs</td>
<td>-0.95 µs</td>
<td>-1 µs</td>
</tr>
</tbody>
</table>

Soft Switching (DGD=3.3 us)

Hard Switching
Good correlation is noticed between the increase of the EL signal and of the dynamic on resistance.

- Dynamic RDS$_{on}$ increase can be attributed to hot carrier type of degradation occurring in the access region (gate-drain).
Is the Degradation Recoverable?

- Comparison of EL spectra before and after hard switching stress measurement demonstrates no permanent degradation.

\[
DGD = -0.81\mu\text{s} \quad V_{DSQ} = 600\text{V}
\]

EL signal under hard switching stress

\[
DGD = 3.3\mu\text{s} - \text{BEFORE}
\]

\[
DGD = 3.3\mu\text{s} - \text{AFTER}
\]
Electro-luminescence as a means to define SOA

- Two identical device layouts, different buffers (optimization for dyn Ron, lateral leakage current etc...)

![Graphs showing electro-luminescence](image-url)
A successful methodology is established for reliability assessment of GaN.

- Initial demonstration on single finger devices shows good correlation with understanding (& TCAD).
- Measurement setup can be easily adapted (high flexibility) for powerbar measurements.
- Tests are done at wafer level → Fast feedback

High power dissipation during a hard-switching event is one of the major degrading factors for GaN power devices.

- Hot electrons accelerated under high off-state bias leads to trapping in access regions → Dynamic $R_{DS_{on}}$ increase.
- Higher the power dissipation during hard-switch event = Higher is the $R_{DS_{on}}$ increase.
- This degradation is NOT permanent
- Degradation can be reduced by proper device architecture (such as Field Plate design, etc)
Conclusions

• ON Semiconductors’ vision on Quality Assurance for GaN based power systems is presented:
 – Si JEDEC qualification to be extended with GaN specific tests, e.g. on Rdyn
 – Design SOAs are developed, supporting application mission profiles
 – Extensive screening tests are mandatory in the early years

• As an example, Rdson dispersion (Rdyn) is studied:
 – Impact demonstrated of hard switching vs soft switching applications.
 – SOA Design rules, enabling product design for high reliability applications

• Collective learning to result in a new Jedec standard specifically for GaN (JC-70).